Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the coherence characteristics of light propagating in nonlinear graded-index (GRIN) multimode fibers after attaining optical thermal equilibrium conditions. The role of optical temperature on the spatial mutual coherence function and the associated correlation area is systematically investigated. In this respect, we show that the coherence properties of the field at the output of a multimode nonlinear fiber can be controlled through its optical thermodynamic properties.more » « less
-
We develop a general methodology capable of analyzing the response of Weyl semimetal (WSM) photogalvanic networks. Both single-port and multiport configurations are investigated via extended versions of Norton’s theorem. An equivalent circuit model is provided where the photogalvanic currents induced in these gapless topological materials can be treated as polarization-dependent sources. To illustrate our approach, we carry out transport simulations in arbitrarily shaped configurations involving pertinent WSMs. Our analysis indicates that the photogalvanic currents collected in a multi-electrode system directly depend on the geometry of the structure as well as on the excitation and polarization pattern of the incident light. Our results could be helpful in designing novel optoelectronic systems that make use of the intriguing features associated with WSMs.more » « less
-
Optical neural networks (ONNs), implemented on an array of cascaded Mach–Zehnder interferometers (MZIs), have recently been proposed as a possible replacement for conventional deep learning hardware. They potentially offer higher energy efficiency and computational speed when compared to their electronic counterparts. By utilizing tunable phase shifters, one can adjust the output of each of MZI to enable emulation of arbitrary matrix–vector multiplication. These phase shifters are central to the programmability of ONNs, but they require a large footprint and are relatively slow. Here we propose an ONN architecture that utilizes parity–time (PT) symmetric couplers as its building blocks. Instead of modulating phase, gain–loss contrasts across the array are adjusted as a means to train the network. We demonstrate that PT symmetric ONNs (PT-ONNs) are adequately expressive by performing the digit-recognition task on the Modified National Institute of Standards and Technology dataset. Compared to conventional ONNs, the PT-ONN achieves a comparable accuracy (67% versus 71%) while circumventing the problems associated with changing phase. Our approach may lead to new and alternative avenues for fast training in chip-scale ONNs.more » « less
-
We demonstrate how the presence of gain-loss contrast between two coupled identical resonators can be used as a new degree of freedom to enhance the modulation frequency response of laser diodes. An electrically pumped microring laser system with a bending radius of 50 μm is fabricated on an InAlGaAs/InP MQW p-i-n structure. The room temperature continuous wave (CW) laser threshold current of the device is 27 mA. By adjusting the ratio between the injection current levels in the two coupled microrings, our experimental results clearly show a bandwidth improvement by up to 1.63 times the fundamental resonant frequency of the individual device. This matches well with our rate equation simulation model.more » « less
-
Abstract The chaotic evolution resulting from the interplay between topology and nonlinearity in photonic systems generally forbids the sustainability of optical currents. Here, we systematically explore the nonlinear evolution dynamics in topological photonic lattices within the framework of optical thermodynamics. By considering an archetypical two-dimensional Haldane photonic lattice, we discover several prethermal states beyond the topological phase transition point and a stable global equilibrium response, associated with a specific optical temperature and chemical potential. Along these lines, we provide a consistent thermodynamic methodology for both controlling and maximizing the unidirectional power flow in the topological edge states. This can be achieved by either employing cross-phase interactions between two subsystems or by exploiting self-heating effects in disordered or Floquet topological lattices. Our results indicate that photonic topological systems can in fact support robust photon transport processes even under the extreme complexity introduced by nonlinearity, an important feature for contemporary topological applications in photonics.more » « less
An official website of the United States government
