skip to main content


Search for: All records

Creators/Authors contains: "Khajavikhan, Mercedeh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that in highly multimoded nonlinear photonic systems, the optical thermodynamic pressures emerging from different species of the optical field obey Dalton’s law of partial pressures. In multimode settings, the optical thermodynamic pressure is defined as the conjugate to the extensive variable associated with the system’s total number of modes and is directly related to the actual electrodynamic radiation forces exerted at the physical boundaries of the system. Here, we extend this notion to photonic configuration supporting different species of the optical field. Under thermal equilibrium conditions, we formally derive an equation that establishes a direct link between the partial thermodynamic pressures and the electrodynamic radiation pressures exerted by each polarization species. Our theoretical framework provides a straightforward approach for quantifying the total radiation pressures through the system’s thermodynamic variables without invoking the Maxwell stress tensor formalism. In essence, we show that the total electrodynamic pressure in such arrangements can be obtained in an effortless manner from initial excitation conditions, thus avoiding time-consuming simulations of the utterly complex multimode dynamics. To illustrate the validity of our results, we carry out numerical simulations in multimoded nonlinear optical structures supporting two polarization species and demonstrate excellent agreement with the Maxwell stress tensor method.

     
    more » « less
  2. Recent years have witnessed a flurry of research activities in topological photonics, predominantly driven by the prospect for topological protection–a property that endows such systems with robustness against local defects, disorder, and perturbations. This field emerged in fermionic environments and primarily evolved within the framework of quantum mechanics which is by nature a Hermitian theory. However, in light of the ubiquitous presence of non-Hermiticity in a host of natural and artificial settings, one of the most pressing questions today is how non-Hermiticity may affect some of the predominant features of topological arrangements and whether or not novel topological phases may arise in non-conservative and out of equilibrium systems that are open to the environment. Here, we provide a brief overview of recent developments and ongoing efforts in this field and present our perspective on future directions and potential challenges. Special attention will be given to the interplay of topology and non-Hermiticity–an aspect that could open up new frontiers in physical sciences and could lead to promising opportunities in terms of applications in various disciplines of photonics.

     
    more » « less
  3. We study the coherence characteristics of light propagating in nonlinear graded-index (GRIN) multimode fibers after attaining optical thermal equilibrium conditions. The role of optical temperature on the spatial mutual coherence function and the associated correlation area is systematically investigated. In this respect, we show that the coherence properties of the field at the output of a multimode nonlinear fiber can be controlled through its optical thermodynamic properties.

     
    more » « less
  4. We investigate the statistical mechanics of the photonic Ablowitz–Ladik lattice, the integrable version of the discrete nonlinear Schrödinger equation. In this regard, we demonstrate that in the presence of perturbations, the complex response of this system can be accurately captured within the framework of optical thermodynamics. Along these lines, we shed light on the true relevance of chaos in the thermalization of the Ablowitz–Ladik system. Our results indicate that when linear and nonlinear perturbations are incorporated, this weakly nonlinear lattice will thermalize into a proper Rayleigh–Jeans distribution with a well-defined temperature and chemical potential, in spite of the fact that the underlying nonlinearity is non-local and hence does not have a multi-wave mixing representation. This result illustrates that in the supermode basis, a non-local and non-Hermitian nonlinearity can in fact properly thermalize this periodic array in the presence of two quasi-conserved quantities.

     
    more » « less
  5. We develop a general methodology capable of analyzing the response of Weyl semimetal (WSM) photogalvanic networks. Both single-port and multiport configurations are investigated via extended versions of Norton’s theorem. An equivalent circuit model is provided where the photogalvanic currents induced in these gapless topological materials can be treated as polarization-dependent sources. To illustrate our approach, we carry out transport simulations in arbitrarily shaped configurations involving pertinent WSMs. Our analysis indicates that the photogalvanic currents collected in a multi-electrode system directly depend on the geometry of the structure as well as on the excitation and polarization pattern of the incident light. Our results could be helpful in designing novel optoelectronic systems that make use of the intriguing features associated with WSMs.

     
    more » « less
  6. Optical neural networks (ONNs), implemented on an array of cascaded Mach–Zehnder interferometers (MZIs), have recently been proposed as a possible replacement for conventional deep learning hardware. They potentially offer higher energy efficiency and computational speed when compared to their electronic counterparts. By utilizing tunable phase shifters, one can adjust the output of each of MZI to enable emulation of arbitrary matrix–vector multiplication. These phase shifters are central to the programmability of ONNs, but they require a large footprint and are relatively slow. Here we propose an ONN architecture that utilizes parity–time (PT) symmetric couplers as its building blocks. Instead of modulating phase, gain–loss contrasts across the array are adjusted as a means to train the network. We demonstrate that PT symmetric ONNs (PT-ONNs) are adequately expressive by performing the digit-recognition task on the Modified National Institute of Standards and Technology dataset. Compared to conventional ONNs, the PT-ONN achieves a comparable accuracy (67% versus 71%) while circumventing the problems associated with changing phase. Our approach may lead to new and alternative avenues for fast training in chip-scale ONNs.

     
    more » « less